Krome School 2015: Exercises

20-24 July

Credits:
T. Grassi, S. Bovino, J. Ramsey, M. Kiiffmeier




Credits: Krome School 2015 Exercises Problem 1

Problem 1: Preparing a chemical network

The aim of this exercise is to understand how to prepare a chemical network and what are the possible
caveats related to this. We choose a simple HoO chemical network to show the evolution and the influence
of the different parameters on the evolution of the chemical species.

Part 1: Basic chemical network
In the first part we consider the chemical network listed here:

Ot +H, — OH'+H
OHJr + HQ — H20+ -+ H
H20+ + HQ — H30+ +H
Hg()+ + e~ — Hgo + H
H,Ot + e~ — OH+ H
H20+ +e — O+ H,
OH" +e- — O+H
O+CR — Of +e”
Of+e — O+y

Before writing any code, draw a sketch of the network to understand how it should work. The suggestion
here is to use Ho (being almost unaffected by the chemistry of oxygen) and e ~as “companion reactants”, as
shown in Fig. 1. This step will help you understand the behaviour of the network in the subsequent parts of
the exercise.

H
H,0t —>| H,0™"

Y
T
IN]
(@)

Figure 1

Part 2: Write the chemical network for KROME

In this part, we will prepare the network for KROME. Some of the reactions are already provided in
networkH20.ntw; some need to be added. As you can see, most of the reaction rate coefficients can be
automatically loaded from the KROME database using auto instead of writing the rate in F90 style. However,
for cosmic ray (CR) ionization, we must explicitly write the rate coefficient as it depends on an external
quantity (i.e., the CR flux). In this case, the rate for the CR ionization of oxygen is kcr = 2.8{cr where
éor = 1.3 x 10717 s71 is a common variable that can be set in the test.f90 file; more on this later. In
KROME , a common variable can be added to a network by using the @common “token”. Common variables
allow “communication” between the network and your main (test.f£90) file. More details on @common and
other tokens can be found in the wiki at bitbucket.org/tgrassi/krome/wiki/quickl.

Note: the photon v and the cosmic rays CR should be omitted from your network file.

Part 3: The main file

If you now run the KROME python with the option -n networkH20.ntw, KROME will raise a warning like
“sinks found, check your network”; this happens because, as you can see from your sketch (part 1), this
network forms water without destroying it! You can avoid this warning with the -noSinkCheck option. We
also strongly suggest you use the -pedantic option to generate a pedantic Makefile in the build/ folder.
If you now run the KROME python again with these additional options, it will automatically create all the
necessary files in the build/ folder, including a pre-made main file called test.£90. This file provides the
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Credits: Krome School 2015 Exercises Problem 1 (continued)

bare-minimum algorithm that you will modify to suit your problem. In this case, we need a loop that dumps
the evolution for every time interval, dt.
Here is some example pseudo-code for this exercise:

initialize species and temperature

initialize cosmic ray flux with the function in krome_user

t =0

dt = le-2 yr

do
dt = dt * 1.1
t =1t +dt

call krome (x(:), Tgas, dt) ! x in cm**-3, Tgas in K, dt in seconds
write output
if(t>1le6 yr) break loop

end do

The initial conditions for the simulation are ng = ny,; = 108 em =2, and ny, = 0.1-14,;. The neutral oxygen
abundance is scaled using the krome_scale_Z subroutine, with log(Z/Z) = 0 (i.e. solar metallicity). This
subroutine is found in the krome_user module, which contains several front-end functions. To retrieve more
details on these functions, you can invoke the python file 1ist_user_functions.py in the build/ folder
(-h for details on its usage). The end time for the simulation is t.,q = 10% yr, and the temperature is set
constant at T,,s = 50 K for the entire simulation.

Once you have modified the test.f90, you can compile KROME via the provided Makefile and then run the
executable ./krome in the build/ folder. If you plot the evolution of water you should obtain something like
Fig. 2 (left). How you choose to plot the results is up to you, but KROME does provide a Gnuplot template
script plot.gps in build/.

Note that, as discussed in the morning lecture, KROME generates a Gnuplot file (species.gps) that contains
the indices of the species in a Gnuplot-friendly style as well as (species.log) that contains the names and
indices in a more generic fashion (for non-Gnuplot users).

Part 4: Key reaction rates

When dealing with chemical networks, it is important to understand what is occurring during the evolution.
One of the most effective diagnostic tools is to rank the fluxes of the different reactions, namely the product
of the rate coefficient with the time-dependent abundances of the reactants (i.e. k x nq(t) x na(t)x...).
In KROME , you can use the krome_print_best_flux subroutine to print the most efficient reactions in
descending rank (list_user_functions.py and the KROME wiki also help here).

Part 5: Adding a reaction
IMPORTANT: before proceeding, please note that adding the -noExample flag to the KROME python call
will NOT replace your test.90 file in build/ that you previously modified.

We will now add a reaction rate from the KIDA database'. We wish to add a secondary photodissociation
reaction from CRs for water, i.e., HHO+CRP—H+OH. Search the database and add the reaction to the
network: the rate coefficient has the same form as the direct CR dissociation, only the pre-factor changes
(click on the information icon, @, on the KIDA website to display the form of the rate coefficient). Re-run
the KROME (python) pre-processor, then compile and run the code. This rate will not affect the total amount
of water, but will have an impact on the OH abundance. Compare your results with Fig. 2 (right).

'http://kida.obs.u-bordeauxi.fr/
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Figure 2 — Expected results for problem 1. Left: part 3; right: part 5.
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Figure 3 Expected results for problem 1, part 6.

Part 6: Play with the parameters

To understand what happens when you change the flux of CRs, run the simulation again by increasing and
decreasing the CR flux by an order of magnitude and plot the evolution of H,O again. You should obtain
Fig. 3 (left).

If we increase the number of independent variables, we can run a sensitivity analysis for the network. As
an example, let’s do this for the first three reactions by changing the auto reaction rate coefficient in the
networkH20.ntw to these temperature-independent coefficients:

reaction rate(cm?/s)
Of +Hy, — OHF+H 016x1078. ¢,
OHT + Hy — HQOJr +H 0.11x10°8. ©2
H,Ot + H, — H30T + H 0.61 x107° -3

where ; are multiplicative factors that allow the variation of the reaction rate intensity (e.g., 1 = 0 will
turn off the first reaction rate). These coefficients can be controlled in the same way as the CR flux, i.e.,
with a @common statement. If you randomly increase or decrease these coefficients by one order of magnitude
you should obtain Fig. 3 (right), which shows 30 runs where we varied @1, @2, @3, and £cr asynchronously
and randomly by one order of magnitude. We suggest you build a loop to randomly change the parameters,
and do so logarithmically, i.e., ¢; = dex(2 - rand() — 1), where 0 < rand() < 1.
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Problem 2: Cooling and Heating

In this exercise we will learn how to customize cooling and heating in KROME. The chemical network used
is a simple atomic network that contains H and Fe up to the first level of ionization (i.e., HT and Fe™).
To continue keeping things simple, cooling will only be provided by Fe™t, while the heating will be from
radioactive decay (°°Fe — products), including ionization of H via high energy electrons.

Note: the model applied in this exercise has some limitations and is intended only to give an overview on
some KROME commands which can be helpful to the user. In particular, (i) the cooling is limited to a single
species, (ii) the ionization due to radionuclides acts only on H, even though H ionization is more important,
and (iii) the effect of the radionuclides is enhanced to create a visible impact on the evolution. However, the
physics employed here can be generalized to more realistic models (see Cleeves+ 2013% and Umebayashi &
Nakano 2009° for example).

Part 1: Basic chemical network
The chemical network employed for this problem is rather simple. It consists of the following set of reactions:
1. H 4+ e"— H + v
2. Fet+ e — Fe + v
3. H+ e — HT+ 2™
4. Fe + e — Fet+ 2e~
The first step consists of preparing the chemical network (Note: remember that you can omit ~ from a
reaction). The reactions are already in the KROME database, so you can write auto instead of explicitly
including a reaction rate coefficient, as in the following example (and Problem 1):

@format:idx,R,R,P,rate
1,H+,E,H,auto

Part 2: Evolution

To test the chemical network, you should write a program that evolves the system from these initial
conditions: n(H') = ny, Tyes = 10° K, and nyy = 10* em™>. To initialize Fe, we again employ
the krome_scale_Z subroutine with solar metallicity (log(Z/Zz) = 0), but note that this function only
scales neutral metals. As we want the iron to be initially fully ionized, you should copy the variable
x(krome_idx_Fe) to x(krome_idx_Fej) and set the other to zero. The electron abundance should be calcu-
lated accordingly (using krome_get_electrons, for example). Recall that you can use 1ist_user_functions.py
to get information on the functions contained in the user module (-h for details on its usage). To evolve the
system in time, you can modify the test.f90 auto-generated by KROME as in the following pseudo-code:

initialize species and temperature

t =0

dt = le-2 yr

do
dt = dt *x 1.1
t =t + dt

call krome

write output

if(t>1e8 yr) break loop
end do

After compiling and running the code, you will hopefully obtain a plot like Fig. 4 (left).

thtp://adsabs .harvard.edu/abs/2013ApJ...777...28C; see CABV2013.pdf in the ex2/ folder.
Shttp://adsabs.harvard.edu/abs/2009ApJ...690. . .69U; see UN2009.pdf in the ex2/ folder.
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Part 3: Cooling

In this part, we will add custom cooling for Fe™ using data from Hollenbach & McKee (1989%; hereafter
HMS89). Note that HM89 provides the relative AE,,; while KROME uses the absolute energy of the individual
level E,. However, since the energy of the ground level is Ey = 0, AEsy = Es, and AFy = FEj, and thus
you can directly use the data provided by HM89. A skeleton cooling file is provided (coolX.dat), and as
you can see, it contains information about the atom levels, transitions, and collisional rates. What you have
to do is extract the missing data from HM89 Table 8 and add (i) A;; coefficients for the transition 2 — 0,
(ii) the excitation coefficients for electron collisions (transition 1 — 0, 2 — 0, and 2 — 1), and energy level 2.
The degeneracy of level n = 2 is 6. Note that, to include the excitation coefficients, an additional variable is
required and can be added at the top of the cooling file with @var, namely 75 = T},,/(100K). Once you have
added the data to the cooling file you can load it to KROME by using the command -coolFile=coolX.dat.

REMINDER: by adding the -noExample flag, the test.90 file that you wrote earlier will NOT be replaced!

Running KROME with the -coolFile=coolX.dat option will not add automatically the appropriate cooling
function to KROME. In order to do that, we need to do one more thing. Check which cooling functions
are available by using -cooling=7. This will stop the execution of KROME after listing all of the available
cooling functions. You should obtain something like:

Cooling FelIl available from coolX.dat
Available coolings are: ATOMIC, H2, HD, DH, DUST, FF, H2GP98, COMPTON,
EXPANSION, CIE, CONT, CHEM, DISS, Z, CO, Z_CIE, Z_CIENOUV, FeII, FILE

where FeIl is included in the list because it has been loaded from the file you prepared. You can now add
the cooling by replacing -cooling=? with -cooling=FeII (case does matter).

Compile and run KROME again to obtain the temperature evolution with time (Fig. 4, right). Note that you
can use the same test.f90 file as before since the KROME pre-processor has automatically replaced all the
files, including those used for the thermal evolution.

Part 4: Excited levels
As a continuation of the previous part, we are going to plot the excitation levels for Fet. To do this, use the
function krome_popcool_dump. Note that the function dumps the data in the following way:

FeII 1 0.11000000E-001 0.20310919E+000 0.31422730E+000
FeIIl 2 0.11000000E-001 0.74648789E-001 0.31422730E+000
FeIl 3 0.11000000E-001 0.36469327E-001 0.31422730E+000

where the columns are (i) atom name, (ii) level number (the ground level is n = 1), (iii) independent variable,
in your case time, (iv) abundance of the level, and (v) total abundance of all the levels for the given atom.
If you plot column (iii) vs. column (iv) divided by column (v) you should get Fig. 5 (left).

Can you comment on the result and explain why the temperature decrease ceases to work around 103 yr?

Part 5: Adding an isotope

In this part of the exercise we want to add the decay reaction °Fe— 60Co— %ONi. For the purposes of our
exercise, we consider the process as a single step 90Fe— 69Ni with a half-life of 7, = 1.5 x 10° yr. Add this
reaction to the network keeping in mind that isotopes are written as, e.g., [60Fe]. With some algebra you
can prove that the reaction rate is In(2)/7;,. The abundance of “Fe is ngope = 107 %np.y, and assume that,

4http://adsabs.harvard.edu/abs/1989ApJ. . .342..306H; a PDF is provided in the ex2/ folder.
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Figure 4 — Expected results for problem 2. Left: part 2; right: part 3.

given the low concentration, we do not care about the ionization state of the isotope, but instead use the
reaction to track its total abundance.

After modifying the network, re-run the KROME python. You will notice a couple of warning messages: (i)
the mass in the reaction is unbalanced because of the 8 decay, (ii) you now have a sink, namely °°Ni. You can
ignore both. Next, set the initial isotopic abundance in the test.f£90 file, compile, and run the executable
again. You should obtain something like Fig. 5 (right).

Part 6: Ionization from isotope decay

We assume that the products of the decay ionize the hydrogen via the reaction H—H"+e~. The reaction
rate depends on the amount of %°Fe present in the gas phase, as well as a coefficient that is a function of
the geometry of the problem (see Cleeves+ 20132 and Umebayashi & Nakano 2009 for further details). We
assume this coefficient ¢ to be a variable by using the @common token (remember to check the wiki, bit-
bucket.org/tgrassi/krome/wiki/quickl, for details), and the final rate is given by &£ - ngore (the index for the
isotope should be called idx_60Fe). Add this reaction to the network and run the system using & = 10710
and 1071% em?® s™1. You should obtain Fig. 6 (left). As you can see (in this particular case), the effects of
isotope decay (ID) on the ionization of H*are negligible.

Part 7: Heating by ionization from isotope decay

Even if the effect on the ionization state is negligible, the heating from the process generates W = 36 eV
per ionization. The energy released into the gas is then E = W £ ngope ny erg ecm ™3 s~ We can add this
heating to the system by using a custom statement in the network file. To do this you should add a custom
heating block as sketched here:

QGheating_start
@heating:user_flux*n(idx_60Fe) * hydrogen abundance * (W in erg)
OGheating_stop

This block will be automatically included into KROME during the python execution. If you compile and run
the executable again, you should obtain Fig. 6 (right). In this case, the heating due to ID is not negligible
at late times.

Problem 2 continued on next page. .. 7



Credits: Krome School 2015 Exercises Problem 2 (continued)

1 T T T T T T T T 10 T T T T T T T T T T
level population
(U E
= 11 b E
G 1 b, 1
g m«.,\ -
o {=2]
kS o
g 2F 3
< 12 b 9
31 ]
60
Fe
------- B0
4 1 1 1 1 1 1 1 1 1 1 13 1 1 1 1 1
2 1 0 1 2 3 4 5 6 7 8 9 2 1 0 1 2 3 9
log(time/yr) log(time/yr)
Figure 5 Expected results for problem 2, continued. Left: part 4; right: part 5.
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Figure 6 — Expected results for problem 2, part 6 and 7. Solid (dashed) lines represent models that include
(omit) ionization /heating due to isotope decay (ID).
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