PRIMORDIAL CHEMISTRY AND THE FORMATION OF THE FIRST STARS

Andrea Ferrara

Scuola Normale Superiore, Pisa, Italy & Kavli IPMU, Tokyo, Japan

Present-day gas

Heavy element mass fraction < 2%C⁺, O, CO, dust grains excellent radiators Thermal eq. timescale « dynamical timescale Typical cloud temperature ≈ 10 K

Primordial gas

No heavy elements H, He poor radiators for T $< 10^4$ K Cloud evolves almost adiabatically.. ..unless H₂ molecules can form

MAIN COOLING PROCESSES IN PRIMORDIAL GAS

1. Radiative recombination

Thermal energy loss of recombining proton and electron due to photon emitted in the process Recombinations to the lowest state lead to ionizing photons, hence net loss = 0 Total rate obtained by summing over all rates for levels with n > 1 (Case B recombination).

2. Collisional ionization

Thermal energy of electrons converted in ionization energy

 $\sigma_{ion} = a \ (EB)^{-1} ln \ (E/B) \ \{1-b \ exp[-c \ (E/B-1)]\} \quad E \ge B = 13.6 \ eV$ Total rate by integrating cross section over Maxwellian distribution

3. Bound-bound transition of hydrogen atom

Most important cooling process around 10,000 K; collisionally excited. Emitted radiation energy equal to energy difference between two levels Level population determined by excitation/de-excitation rates for each level

4. Thermal bremsstrahlung emission

Radiation due to acceleration of a charge in a Coulomb field $dE/dv \, dV \, dt = (16 \, \pi \, e^6 \, / 3 \, \sqrt{3} \, c^3 \, m_e^2 \, v) \, n_e \, n_p \, g_{ff}$ Total rate by integrating cross section over Maxwellian distribution

PRIMORDIAL COOLING FUNCTION

FUNDAMENTAL STAR FORMATION TIMESCALES

• Cooling time

 $t_{cool} = 3kT / 2n\Lambda(T)$

• Free-fall time

 $t_{ff} = (3\pi/32 \ G\rho)^{\frac{1}{2}}$

• Hubble time

$$t_H = H^{-1}(z)$$

COOLING DIAGRAM

COOLING BY HYDROGEN MOLECULES

1. Radiative cooling

Hydrogen molecules have energy levels corresponding to vibrational $(10^3 K < T < 10^4 K)$ and rotational $(T < 10^3 K)$ transitions Einstein's A-coefficient much smaller (no dipole moment) \rightarrow Absorption coefficient very small

$$\Lambda_{H2} = n_{H2} \left[\begin{array}{c} n_H L_{vr}^{H}(n,T) + n_{H2} L_{vr}^{H2}(n,T) \right] \\ | \\ H-H_2 \end{array} \qquad H_2 - H_2 \quad collisional \ excitations$$

LEVEL POPULATION

De-excitation rate=Excitation ratecollisional $\propto n^2$ collisionalradiative decay $\propto n$ collisional

<u>*Critical density*</u> n_{crit} :: collisional exc. rate = radiative decay rate

 $\begin{array}{ll} \Lambda_{H2} \propto n^2 & for \ n < n_{crit} \\ \Lambda_{H2} \propto n & for \ n > n_{crit} \end{array}$

COOLING BY HYDROGEN MOLECULES

2. Dissociation cooling/heating

Hydrogen molecules have lower potential energy than the state of two separated neutral H-atoms H_2 molecules absorb the thermal energy of the colliding particle causing the dissociation

 $\Lambda_{diss} = 7.16 \times 10^{-12} (dn_{H2}/dt)$ erg s⁻¹ cm⁻³

Dissociation of H_2 molecules can occur via three main channels:

- Collisions with H⁺ ions high ionization level
- Collisions with H atoms low ionization level
- Collisions with H₂ molecules *low ionization level*

Heating (reverse process) occurs when H_2 molecules form in an excited state If collisional de-excitation dominates over radiative decay (high n), energy transported into gas thermal energy

 $\Gamma_{form} = 7.16 \times 10^{-12} (dn_{H2}/dt)_{+} (1 + n_{cr}/n_{H})^{-1} \text{ erg s}^{-1} \text{cm}^{-3} \longrightarrow 0 \text{ for } n \ll n_{cr}$

FORMATION CHANNELS

H⁻ Channel 1.

 $H + e \rightarrow H^{-} + \gamma$ $H^{-} + H \rightarrow H_{2} + e$

 H_2^+ Channel 2.

 $H + H^{+} \rightarrow H_{2}^{+} + \gamma$ $H_{2}^{+} + H \rightarrow H_{2} + H^{+}$

- Dipole moment necessary to form H_2 in two-body reactions
- Require electrons or protons: ionization degree important

Three body reactions 3.

- $3H \rightarrow H_2 + H$ $2H + H_2 \rightarrow 2H_2$ Important at high $n > 10^8 \text{ cm}^{-3}$, i.e. during prestellar collapse
- Direct collision between excited H atoms 4. $H(n=1) + H(n=2) \rightarrow H_2 + \gamma$ • Important at $z > 10^3$ as CMB photons destroy H_2^+ and H^-

DISSOCIATION CHANNELS

Impact with H / H_2 1.

 $3H \leftarrow H_2 + H \text{ or} \\ 2H + H_2 \leftarrow 2H_2 \qquad \qquad \bullet T > 2000 \text{ K, lower T collisions not sufficiently energetic}$

Impact with H⁺ 2.

 $\begin{array}{c} H_2^{+} + H \leftarrow H_2 + H^+ \\ 2H \leftarrow H_2^{+} + e \end{array} \quad \bullet \text{ Important in hot ($T > 8000 K$) and ionized gas} \end{array}$

- Impact with electrons 3.
- Photodissociation 4.

$$H_2^* \leftarrow H_2 + \gamma$$
$$2H + \gamma \leftarrow H_2^*$$

 $2H + e \leftarrow H_2 + e$ • Always sub-dominant with respect to 2.

• Two step Solomon process; very important.

Physical hint:

$$t_{2body} \propto n^{-1} \propto (1+z)^{-3}$$

 $t_H \propto (1+z)^{-3/2}$

RELIC ELECTRONS $x_e^{rel} \approx 3 \times 10^{-4}$

RELIC MOL. HYDROGEN $y_{H2}^{rel} \approx 1.1 \times 10^{-6}, \qquad z < 100$ $\approx 1.0 \times 10^{-7}, \qquad 100 < z < 250$ $\approx 10^{-7} [(1+z)/250]^{-14}, \qquad 250 < z$

12

13

STRUGGLING FOR MORE H₂: SPHERICAL COLLAPSE

Dynamics

$$\frac{\rho}{\langle \rho \rangle} = \frac{9 (\alpha - \sin \alpha)^2}{2 (1 - \cos \alpha)^3} \qquad \text{where} \qquad \frac{1 + z_{vir}}{1 + z} = \left[(\alpha - \sin \alpha)/2\pi \right]^{2/3}$$
If $\rho > \rho_{vir} = 18\pi^2 \langle \rho \rangle \qquad \text{then} \qquad \rho = \rho_{vir}$

Thermo/chemical evolution

$$\frac{d}{dt} \frac{3 k T}{2 \mu m_p} = (p / \rho^2) \frac{d\rho}{dt} - \Lambda (T, y_i)$$
$$\frac{dy_i}{dt} = \sum k_j y_j + n_H \sum k_{kl} y_k y_l + n_H^2 \sum k_{mns} y_m y_n y_s$$

ENOUGH FOR COLLAPSE ?

 $t_{cool} = 3kT_{vir} / 2\mu n_{vir} \Lambda(y_{H2}, T_{vir}) = (3\pi / 32 G\rho_{vir})^{\frac{1}{2}} = t_{ff}$

- Barkana, R. & Loeb, A. 2001, Phys. Rep., 349, 125
- Bromm, V. & Larson, R. 2004, *ARA&A*, **42**, 79
- Ciardi, B. & Ferrara, A. 2006, SSRv, 116, 625 (updated: Apr 2008)
- Ferrara, A. 2008, Saas-Fee School