Exercises plan

- Part 0: stand-alone chemical network with KROME
- Part 1: adding chemistry to PROTO
- Part 2: adding thermal processes to PROTO
- Part 3: adding photochemistry to PROTO
- Part 4: playing with surface chemistry

Problem 2: Adding Photochemistry

Aims of this exercise

- 1 add photochemistry to the chemical network
- 2 enable photobins in KROME
- 3 tell to KROME what is your photochemistry metric
- 4 tell to KROME what is the radiation flux in each bin
- 6 use KROME to get gas and dust opacity

- KROME is capable of using xsecs form files
- add water photodissociation rates to network (see table)
- download H₂O xsec(s) from SWRI database (see talk)
- copy as H20.dat in the SWRI folder of KROME (surprise)

$$\begin{array}{rcl} \text{20.} \ \text{H}_2\text{O} + \gamma & \rightarrow & \text{H} + \text{OH} & \text{@xsecs=SWRI} \\ \text{21.} \ \text{H}_2\text{O} + \gamma & \rightarrow & \text{H}_2\text{O}^+ + \text{e}^- & \text{@xsecs=SWRI} \end{array}$$

- @xsec=SWRI is your rate
- wrap reactions in <code>@photo_start</code> and <code>@photo_stop</code> (see CR)

KROME Bootcamp 2018 - Binning in KROME

Pre-processor stage

- nenergy in proto_commons.f90 determines KROME bins
- set bins using -photoBins=NBINS options
- re-run KROME pre-processor with the new options
- copy the usual suspect (krome_all.f90) and all swri*.dat to PROTO folder

Compilation/run stage

- set the photobin metric¹ using krome_set_photobinE_lr
- set the amount of radiation per energy bin² krome_set_photoBinJ
- compile, run, and plot H₂O (cfr. with Fig. 6)

¹same for all cells, and determined by PROTO

²each cell has a different flux

KROME Bootcamp 2018 - Adding opacity

Opacity in KROME

- KROME provides gas and dust opacity
- gas opacity is self-consistent (see slides), but not effective here
- dust opacity can be loaded from file (see below) using krome_load_opacity_table in init_chemistry

Opacity file

use opacity file from Draine's website

PROTO gets opacity from KROME

• Each cell get the energy-dependent opacity from KROME using krome_get_opacity_size_d2g in solve_chemistry

イロト イポト イヨト イヨト

æ

・ロト ・四ト ・ヨト ・ヨト

Exercises plan

- Part 0: stand-alone chemical network with KROME
- Part 1: adding chemistry to PROTO
- Part 2: adding thermal processes to PROTO
- Part 3: adding photochemistry to PROTO
- Part 4: playing with surface chemistry

Plan

- Add water sticking and evaporation
- Play around with $T = T_{dust}$ to understand what is going on

22. H ₂ O	\rightarrow	H_2O_{dust}	krate_stickSi
23. H_2O_{dust}	\rightarrow	H ₂ O	krate_evaporation

Table: Surface chemistry reactions and corresponding rates.

Adsorption

 $X \to X_{\textit{dust}}$

$$k_a = \frac{\pi v_g S \int a^2 \varphi(a) da}{4/3\pi \rho_0 \int a^3 \varphi(a) da}$$

• momenta
$$\langle a^2 \rangle$$
 and $\langle a^3 \rangle$
• if $\varphi(a) \propto a^p \rightarrow$ analytical
• $p = -3.5$
• $\rho_0 = 3 \text{ g cm}^{-3}$
• $a_{min} = 5 \times 10^{-7} \text{ cm}$
• $a_{max} = 2.5 \times 10^{-5} \text{ cm}$
• $\mathcal{D} = 10^{-2}$
• $V_g = \sqrt{8k_BT/\pi m_X}$
• $S(T, T_d) = \text{ some function}$
• 1, CO, CO_dust, krate_stickSi(n, idx_CO, Tdust)

2

イロト イヨト イヨト イヨト

Description $X_{dust} \rightarrow X$ $k_e = \nu_0 \exp\left(-\frac{E_i}{k_B T_d}\right)$ 2, CO_dust, CO, krate_evaporation(n, idx_CO, Tdust)

Problem 1 (Chemical networks)

< 日 > < 同 > < 回 > < 回 > < □ > <

10³ K vs 50 K

yscale! $50,85,10^2,10^3$ K, try also 80 K to compare with 85 K.

KROME BOOTCAMP 2018

GOOD WORK!

Problem 1 (Chemical networks)

э

ヘロト 人間 ト 人 ヨト 人 ヨト